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Algorithm for Global Leaf Area Index Retrieval
Using Satellite Imagery

Feng Deng, Jing M. Chen, Stephen Plummer, Mingzhen Chen, and Jan Pisek

Abstract—Leaf area index (LAI) is one of the most important
Earth surface parameters in modeling ecosystems and their inter-
action with climate. Based on a geometrical optical model (Four-
Scale) and LAI algorithms previously derived for Canada-wide
applications, this paper presents a new algorithm for the global
retrieval of LAI where the bidirectional reflectance distribution
function (BRDF) is considered explicitly in the algorithm and
hence removing the need of doing BRDF corrections and nor-
malizations to the input images. The core problem of integrating
BRDF into the LAI algorithm is that nonlinear BRDF kernels
that are used to relate spectral reflectances to LAI are also LAI
dependent, and no analytical solution is found to derive directly
LAI from reflectance data. This problem is solved through de-
veloping a simple iteration procedure. The relationships between
LAI and reflectances of various spectral bands (red, near infrared,
and shortwave infrared) are simulated with Four-Scale with a
multiple scattering scheme. Based on the model simulations, the
key coefficients in the BRDF kernels are fitted with Chebyshev
polynomials of the second kind. Spectral indices—the simple ratio
and the reduced simple ratio—are used to effectively combine the
spectral bands for LAI retrieval. Example regional and global
LAI maps are produced. Accuracy assessment on a Canada-wide
LAI map is made in comparison with a previously validated
1998 LAI map and ground measurements made in seven Landsat
scenes.

Index Terms—Bidirectional reflectance distribution function
(BRDF), Chebyshev polynomials, geometrical optical (GO) model,
leaf area index (LAI), lookup table (LUT).

I. INTRODUCTION

SATELLITE Earth observation is a powerful tool to measure
and characterize the state of the biosphere at regional and

global scales. However, for quantitative applications of Earth
observation data, we need to relate satellite spectral measure-
ments to surface biophysical parameters, such as the leaf area
index (LAI), and the fraction of absorbed photosynthetically
active radiation (fAPAR). LAI is one of the key vegetation
structural variables for quantitative analysis of many physical
and biological processes related to vegetation dynamics and its
effects on global carbon cycle and climate [1].
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Following the Advanced Very High Resolution Radiome-
ter (AVHRR) series onboard National Oceanic and At-
mospheric Administration (NOAA) satellites, VEGETATION
onboard SPOT 4, the second Along-Track Scanning Radiome-
ter (ATSR-2) on ERS-2, the Advanced ATSR (AATSR) and the
Medium Resolution Imaging Spectrometer (MERIS) onboard
ENVISAT, and the Moderate Resolution Imaging Spectro-
radiometer (MODIS) onboard the Terra and Aqua satellites
have been able to monitor the photosynthetic activity of the
biosphere at regional and global scales at daily time intervals.
However, with the available spectral measurements from these
satellite sensors, two kinds of methods are often applied to
estimating LAI. The first kind is based on vegetation indices
(VIs), i.e., various combinations of reflectances in different
spectral bands. Besides the most often used VIs, namely, the
normalized difference vegetation index (NDVI) [2], and simple
ratio (SR) [3], a large number of other indices (e.g., [4]–[6])
have been used to relate LAI to surface reflectances. Based
on VIs, algorithms were developed to estimate LAI from the
reflectance of near-infrared (NIR), visible, and other spectral
bands and regional and global maps [7]–[12] of LAI, and
related products have been produced with various degrees of
accuracy, although the problem of saturations of reflectances
in the various spectral bands at high LAI values [13], [14] is
always a major cause for concern using these data.

The alternative approaches are based on the inversion of
canopy radiation models [13]. Because these models simu-
late physical processes, their derived parameters have physical
meanings; thus, theoretically, these kinds of methods are prefer-
able for our accuracy requirements. However, these methods
require significant computational resources, and although they
have become an interesting subject of current studies (e.g., [14]
and [15]), they are often too slow for global applications.
This problem results not only from the complexity of canopy–
radiation interaction processes but also from inversion methods
themselves, which often require a large number of iterations to
converge toward appropriate solutions. Besides the traditional
iterative optimization approach, alternative methods such as
lookup tables (LUTs) have been proposed for large dataset
processing [16], [17]. The accuracy, however, depends on the
dimension of the LUTs because very large LUTs will also
slow down the search process. Therefore, a preferred inversion
method for large-area applications would be LUTs with small
or moderate dimensions requiring only few iterations.

As one of the main products of the MODIS sensor, the
MODIS LAI product (MOD15A2) has been routinely produced
and increasingly used for various global and regional studies
[18], [19]. In the meantime, there are still issues related to the
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existing various datasets and algorithms, such as different def-
initions of LAI, different measurement instruments and proto-
cols, different consideration of nonrandom canopy architecture,
different cover type separations, different seasonal trajectory
smoothing methods, etc. [9], [20]. Unfortunately, such LAI
products can vary significantly depending on the algorithms
(often developed based on specific radiative transfer models)
and the input datasets used; thus, it is desirable to have alterna-
tive products for global and regional applications. One example
of a regional alternative to MODIS is the Canada-wide LAI
estimate [9]. However, this product is based on an algorithm
that requires atmospherically corrected and bidirectional re-
flectance distribution function (BRDF)-normalized reflectance
images, i.e., the atmospherically corrected reflectance images
are normalized to a common geometry: nadir view and 45◦ solar
zenith angle (SZA) [21]. For global applications, this BRDF
normalization is not the ideal way to consider the angular
effects because the SZA varies significantly globally for any
given date and large normalization errors can therefore occur
when we force the reflectance to a common SZA. This is par-
ticularly of concern as kernel-based simple BRDF models are
often used for such normalization. For this reason and for global
application, we change the approach by incorporating directly
the effects of the BRDF and hence remove the requirement of
BRDF normalization to the input images. The new algorithm
is developed based on the Four-Scale bidirectional reflectance
model [22]. For every land cover type, a large number of Four-
Scale simulations are made to determine all the parameters
of the algorithm, including BRDF kernel coefficients. Besides
the conventional red and NIR bands, the shortwave infrared
(SWIR) band is also used in the algorithm to replicate better
the behavior of the vegetation reflectance in satellite images.
A small LUT and a method that requires only two iterations
are then compiled to accelerate the LAI inversion and make the
algorithm applicable for processing global datasets.

The objectives of this article are: 1) to document the prin-
ciples of this new algorithm and 2) to validate the algorithm
by comparing with a previously validated Canada-wide LAI
image and ground measurements of different biomes in Canada.
We will also show example global LAI products generated
using this algorithm from the ten-day synthesis VEGETATION
reflectance images at 1-km resolution.

II. THEORETICAL BASIS

A. LAI Definition and Selection of a Spectral Index

LAI is defined as one-half the total green leaf area (all sided)
per unit ground surface area [23]. This definition is the same as
the traditional definition [24] based on the largest projected area
(i.e., one sided) for broad leaves, but it makes a large difference
for conifer needles.

As in most studies (see [27]), the LAI in this algorithm is
estimated from remote sensing data using relationships between
LAI and VIs. In our algorithm, we generally use the SR,
defined as

SR =
ρNIR

ρRED
(1)

where ρNIR and ρRED are the reflectances in NIR and red
bands, respectively. The relationship is developed based on
Four-Scale simulations and can be expressed as

L = fL_SR(SR · fBRDF(θv, θs, φ)) (2)

where L is the LAI, SR is the simple ratio, θs is the SZA,
θv is the view zenith angle (VZA), φ is the relative azimuth
angle between the sun and the viewer (PHI), fL_SR() is a
function describing the relationship between BRDF-modified
SR and LAI, and fBRDF() is the BRDF modification function
for SR.

A new vegetation index, the reduced simple ratio (RSR) [25],
which is less sensitive to vegetation type and background, was
also used for specific vegetation types. It is defined as follows:

RSR =
ρNIR

ρRED

(
1 − ρSWIR − ρSWIRmin

ρSWIRmax − ρSWIRmin

)
(3)

where ρSWIR is the reflectance in the SWIR band and
ρSWIRmax and ρSWIRmin are respectively the maximum and
minimum SWIR reflectances selected for specific land covers.

Similarly, we establish a relationship between RSR and LAI
based on the Four-Scale model

L = fL_RSR

(
SR · fBRDF(θv, θs, φ)

·
(

1 − ρSWIR · fSWIR_BRDF(θv, θs, φ) − ρSWIRmin

ρSWIRmax − ρSWIRmin

))
(4)

where fL_RSR() is a function describing the relationship be-
tween BRDF-modified RSR and LAI and fSWIR_BRDF() is a
BRDF modification function for SWIR reflectance.

B. Canopy Reflectance Model Used

A physically based geometrical optical (GO) model is used
here to simulate the interaction between incoming solar radi-
ation and the vegetated surface and thus to generate parame-
ters required for the LAI algorithm. The advantages of GO
models relative to more sophisticated radiative transfer models
(see review by Qin and Liang [26]) include their computation
efficiency, easiness in investigating BRDFs for a large set of
input parameters, and satisfactory accuracies for general appli-
cations [27]. The Four-Scale model developed by Chen and
Leblanc [28] describes canopy reflectance considering four
scales of canopy architecture including the distribution of tree
crowns, crown geometry, crown internal structure (branches,
shoots), and leaf distriubtion. The model used here also in-
cludes a multiple scattering scheme developed by Chen and
Leblanc, and thus, it is also accurate for spectral bands (such
as NIR and SWIR) with large multiple scattering effects in the
canopy. In Four-Scale, the following theoretical expression for
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the hotspot shape is unique in utilizing the canopy gap size
distribution information:

F (ξ) =

∫ ∞
λmin

[
1 − ξ

tan−1( λ
Hθ

)

]
N(λ)dλ

∫ ∞
λmin

N(λ)dλ
(5)

where ξ is the angle between the sun and the viewer relative to
the target, defined as

cos ξ = cos θs cos θv + sin θs sin θv cos φ (6)

where F (ξ) is a hot spot function, being unity when ξ = 0 and
zero when ξ exceeds the largest tan−1(λ/Hθ) possible, Hθ is
the gap depth in the direction of θs, λmin is the smallest gap
to be included in the integration and depends on the value of
ξ, and N(λ) is the number density for canopy gaps of size λ.
N(λ) is defined by

N(λ) =
Lp

Wp
exp

[
−Lp

(
1 +

λ

Wp

)]
(7)

where Lp is the projected area index of the objects responsible
for the canopy gaps and Wp is the characteristic dimension of
the objects.

The input parameters of Four-Scale can be separated in three
categories, as follows:

1) site parameters (model domain size, LAI, tree density,
tree grouping index, and SZA);

2) tree architectural parameters (crown radius and height,
apex angle, needle-to-shoot ratio, and typical leaf or shoot
size);

3) spectral reflectivities of the foliage and the background in
the various bands.

Four-Scale is used to simulate BRDF shapes and relation-
ships between BRDF and LAI for each of the major cover
types using a large combination of these parameters. For LAI
algorithm development, these simulated results are fitted with a
kernel-based BRDF model as outlined below.

III. LAI ALGORITHM AND

IMPLEMENTATION PROCEDURES

A. Algorithm Development

The Four-scale model is, however, too complex to be inverted
directly on remote sensing images. Simplifications into com-
binations of four [29], [30] and two [31] kernels have been
developed for various applications. In our LAI algorithm de-
velopment, the two-kernel version, a modified Roujean’s model
[31], [32], is used as a base to fit the behavior of Four-Scale, i.e.,

ρ(θv, θs, φ) = ρ0(0, 0, φ) (1 + a1f1(θv, θs, φ)

+a2f2(θv, θs, φ)) ·
(

1 + c1 exp
[
−

(
ξ

π

)
c2

])
. (8)

The last term involving c1 and c2 is the modification made by
Chen and Cihlar to consider pronounced hotspot effects, based
on the hotspot function as used by Four-Scale (5), although it
introduces two additional parameters and makes the equation
nonlinear. Functions f1 and f2 in (8) are defined as

f1(θv, θs, φ)

=
1
2π

[(π − φ) cos φ + sinφ] tan θs tan θv − 1
π

·
(

tan θs + tan θv

+
√

tan2 θs + tan2 θv − 2 tan θs tan θv cos φ
)

(9)

and

f2(θv, θs, φ)=
4
3π

1
cos θs+cos θv

·
[(π

2
−ξ

)
cos ξ+sin ξ

]
− 1

3
.

(10)

In processing reflectance images, for any selected pixel in the
image, the reflectance ρi and the angle combination (θvi, θsi,
φi) can be obtained, and with given values of a1, a2, c1, and c2,
ρ0(0, 0, φ) can be calculated from the aforementioned formulas.
Conversely, from ρ0(0, 0, φ), the reflectance ρ at any angle
combination (θv, θs, φ) can also be estimated from (8). All of
the BRDF kernel coefficients a1, a2, c1, and c2 are based on
Four-Scale model results for different land cover types.

Given these relations, it is possible to write the functions
fBRDF and fSWIR_BRDF [(11) and (12), respectively, shown
at the bottom of the page] that can be used to cast the SR and

fBRDF =
(1 + a1REDf1(θvi, θsi, φi) + a2REDf2(θvi, θsi, φi)) ·

(
1 + c1RED exp

[
−

(
ξi

π

)
c2RED

])

(1 + a1NIRf1(θvi, θsi, φi) + a2NIRf2(θvi, θsi, φi)) ·
(
1 + c1NIR exp

[
−

(
ξi

π

)
c2NIR

])

·
(1 + a1NIRf1(θvn, θsn, φsn) + a2NIRf2(θvn, θsn, φsn)) ·

(
1 + c1NIR exp

[
−

(
ξn

π

)
c2NIR

])

(1 + a1REDf1(θvn, θsn, φsn) + a2REDf2(θvn, θsn, φsn)) ·
(
1 + c1RED exp

[
−

(
ξn

π

)
c2RED

]) (11)

fSWIR_BRDF =
(1 + a1SWIRf1(θvn, θsn, φsn) + a2SWIRf2(θvn, θsn, φsn)) ·

(
1 + c1SWIR exp

[
−

(
ξn

π

)
c2SWIR

])

(1 + a1SWIRf1(θvi, θsi, φi) + a2SWIRf2(θvi, θsi, φi)) ·
(
1 + c1SWIR exp

[(
ξi

π

)
c2SWIR

]) (12)
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SWIR bands of a pixel at any angle combination (θvi, θsi, φi)
to a new angle combination (θvn, θsn, φn): where subscript
i represents an image pixel, subscript n represents the new
angle combination from which we intend to calculate the LAI
value given the LAI–SR or RSR relationship at that angle
combination, and subscripts RED, NIR, and SWIR represent
corresponding spectral bands.

In principle, based on (11) and (12), the LAI value can
be calculated straightforwardly from (2) or (4). However, a
complication exists because the kernel coefficients (a1 and a2)
depend on the LAI to be retrieved. Thus, the core problem
of integrating BRDF into LAI algorithm is that the equations
describing the BRDF–LAI interdependence are functional rela-
tionships. Mathematically, this can be expressed, for SR- and
RSR-based methods, respectively, as in

L = fL_SR (SR · fBRDF (θv, θs, φ, a1(L), a2(L))) (13)

and (14), shown at the bottom of the page.
Although this problem can be solved numerically, such

methods are, however, not practical for large-area applications,
which require computation efficiency. To make LAI retrieval
feasible globally, we have developed a computational method-
ology to solve this problem through a simple iteration proce-
dure. An alternative to this approach, the Secant method [33],
in finding the proper L value was about seven times longer in
computation time than the method we propose.

In our method, a precursor LAI value for a pixel is
first produced from a general cover-type-dependent SR–LAI
relationship (2) assuming fBRDF(θvi, θsi, φi) = 1, then BRDF
kernels parameters are calculated with this precursor LAI value,
BRDF modification functions for SR and SWIR are calculated
using (11) and (12), and finally, LAI is recalculated from the
BRDF kernels and SR or RSR from (2) and (4). In practice,
functions a1(L) and a2(L) and parameters c1 and c2 are
prerequisites to using (13) and (14) for converting reflectances
and SR from one angle combination to another. In our case,
the functions a1(L) and a2(L) are expressed as Chebyshev
polynomials of the second kind.

B. Chebyshev Polynomials Used in the Algorithm

In the process of algorithm development, a mathematical
form is needed to express the relationships used in the algorithm
that are both accurate and easily implemented. Chebyshev
polynomials of the second kind [34] are chosen for this purpose.
First, several Chebyshev polynomials Ui(x) of the second kind
for x ∈ [−1, 1] and i = 1, 2, 3, . . . are defined as

U0 =1
U1 =2x
U2 =4x2 − 1
U3 =8x2 − 4x. (15)

TABLE I
IGBP LAND COVER CLASSES AND COMBINED

CLASSES FOR LAI RETRIEVAL

These can be expressed in a general recursive form, i.e.,

Ui+1 = 2x.Ui − Ui−1. (16)

In our LAI algorithm, the functions fL_SR, fL_RSR, a1(L), and
a2(L) are represented in the recursive form

f =
i=n∑
i=0

kiUi(x), for n ≤ 10 (17)

where ki are constants to be found from model results through
regression analysis, and we found that 11 terms is sufficient to
mimic any curve shapes from our simulations (n ≤ 10). For
example, x can be LAI, and f can be a2(L).

C. Cover-Type-Dependent Algorithms

As vegetation structure is distinctly different among land
cover types, Four-Scale simulations are made separately for
different cover types. The functions fL_SR and fL_RSR and
coefficients a1(L) and a2(L) are derived based on the simu-
lations for each distinct cover type. In the implementation of
the algorithm, any land cover map can be used, but in our
case, we adopted the IGBP land cover map [35] and GLC2000
[36] through combining some of the cover types with similar
structural characteristics as in Table I. Snow/ice and water body
classes are not considered in LAI retrieval.

The modified Roujean’s model is used as a base to fit the
results of each of the calculated reflectances to determine c1

and c2 and, at the same time, to apply Chebyshev polynomials
of the second kind to fit to the simulated coefficients a1 and
a2 as functions of LAI. The relationship of LAI with SR or

L = fL_RSR

(
SR · fBRDF(θv, θs, φ, a1(L), a2(L)) ·

(
1 − ρSWIR · fSWIR_BRDF(θv, θs, φ, a1(L), a2(L)) − ρSWIRmin

ρSWIRmax − ρSWIRmin

))

(14)
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Fig. 1. L–SR and L–RSR relationships for the coniferous and deciduous types at a fixed view angle (nadir) but at different SZAs. (a) L-SR relationships for
coniferous at VZA = 0◦, PHI = 0◦. (b) L-SR relationships for deciduous at VZA = 0◦, PHI = 0◦. (c) L-RSR relationships for coniferous at VZA = 0◦, PHI =
0◦. (d) L-RSR relationships for deciduous at VZA = 0◦, PHI = 0◦.

RSR is also fitted using the same polynomials. Relationships
between L and SR (fL_SR) and between L and RSR (fL_RSR)
at selected angle combinations for coniferous and deciduous
forests are shown in Fig. 1 as examples. These four figures
demonstrate the following points: 1) Changes in the SZA
have large effects on the L–SR and L–RSR relationships for
both coniferous and deciduous cover types, suggesting that
considering SZA in LAI algorithms is very important; 2) the
relationships for the coniferous forest type are more linear than
those for deciduous forest types, in agreement with experimen-
tal findings of Chen et al. [9]; 3) L–RSR curves are further
apart than L–SR curves at different SZAs, indicating that after
considering SWIR in RSR, the influence of SZA is enhanced.
This may be due to a large angle dependence of the reflectance
in the SWIR band; and 4) at larger SZAs, the saturations of
SR and RSR at LAI > 6 are more apparent for the decidu-

ous forest type, also in agreement with empirical evidence of
Chen et al. [9]. Relationships between L and SR (fL_SR) and
between L and RSR (fL_RSR) for different cover types at
specific angle combinations are shown in Fig. 2. From these
figures, we see that although the LAI of the coniferous type
increases quickly with increasing SR, it is relatively slow for
crops and grass. The other cover types are the intermedi-
ate cases. These differences reflect the effects of the canopy
structure (such as foliage clumping) and the optical character-
istics of leaves in each cover type. Comparing Fig. 2(a) and (b),
we can see that the differences in L–RSR relationships for the
various cover types are much smaller than those in L–SR re-
lationships, suggesting a smaller cover type dependence of the
RSR [25]. However, the differences among various cover types
in Fig. 2(b) are still significant, and therefore, a land cover-
dependent algorithm is still a necessary even if RSR is used.
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Fig. 2. L–SR and L–RSR relationships for different cover types at nadir and at SZA of 35◦. (a) L-SR relationships at VZA = 0◦, PHI = 0◦, SZA = 35◦.
(b) L-RSR relationships at VZA = 0◦, PHI = 0◦, SZA = 35◦.

D. Implementation Procedure

In applying the LAI algorithm, the following steps are
followed:

Step 1) The SZA is divided into six ranges, i.e., 1) [0, 10),
2) [10, 20), 3) [20, 30), 4) [30, 40), 5) [40, 50),
6) [50, 70], and for each SZA range, a set of rela-
tionships between L and SR (fL_SR) are provided
at different VZAs: 0◦—representing a VZA range of
[0, 10), 20◦—representing a VZA range of [10, 30),
30◦—representing a VZA range of [30, 45), and
50◦—representing a VZA range of larger than 45◦,
at two azimuth angles between the sun and the
viewer (φ): 0◦ and 180◦. A linear interpolation is
performed to obtain a final relationship at a given φ
value for the first approximation of L.

Step 2) For each SZA range, predefined a1(L) and a2(L)
functions in the form of Chebyshev polynomials of
the second kind and parameters c1 and c2 are used
to calculate the relevant fBRDF and fSWIR_BRDF,
so we can estimate SR and RSR at any angle
combinations.

Step 3) LAI is calculated using the relationships between L
and SR (fL_SR) and between L and RSR (fL_RSR)
at specific angles.

The general flowchart and a detail procedure for calculating
the LAI are shown in Figs. 3 and 4, respectively.

E. SR- and RSR-Based Algorithms

As described in the last two sections, we have developed
two separate algorithms, i.e., 1) SR based and 2) RSR based,
to retrieve LAI. These algorithms can produce two separate
maps of LAI for a given satellite image. As RSR was developed
to minimize the variable background effect on LAI retrieval
for forest stands and is sensitive to rainfall or irrigation in

Fig. 3. General flowchart for the LAI algorithm.

cropland and grassland [9], the RSR algorithm is used for all
forest pixels and the SR algorithm for all other cover types
to produce one LAI map for a given input image. These two
separate algorithms also give a freedom for their applications
to sensors with and without the SWIR band.

IV. RESULTS—GLOBAL LAI EXAMPLE MAPS

Based on this new LAI algorithm, VEGETATION ten-day
synthesis images have been used to produce global LAI maps.
As examples, images dated January 21 and July 21, 2003 are
used to produce the two LAI maps shown in Fig. 5. The spatial
patterns and general LAI magnitudes are comparable to those
produced by Myneni et al. [18]. These VEGETATION S10
images have been adjusted for the atmospheric effect using
the simplified method for atmospheric correction (SMAC) [37],



DENG et al.: ALGORITHM FOR GLOBAL LAI RETRIEVAL USING SATELLITE IMAGERY 2225

Fig. 4. Procedure to calculate LAI. For a given pixel in the image processing, only one SZA range and one VZA range are selected at a time to complete the
procedure.

and clouds were screened using the standard VEGETATION
formulas. However, despite these approaches and the use of
maximum NDVI criterion for selecting the best date of mea-
surements in each pixel to form the ten-day synthesis, it is
still possible to find considerable residual cloud effects. The
low LAI areas in part of the Amazon, for example, are caused
by these effects. To minimize these effects, we have devel-
oped a procedure named locally adjusted cubic-spline capping
(LACC) [20] to reconstruct the seasonal trajectory of LAI pixel
by pixel. The LACC procedure is designed to produce a sea-
sonal capping curve by progressively replacing abnormally low
values with fitted values. As the application of this procedure
requires a full seasonal series of images, it has not been applied
to these two examples.

V. ACCURACY ASSESSMENT

The accuracy assessment was conducted in three parts,
namely: 1) the accuracy of the two-kernel Chebyshev approx-
imation is examined to see how well the algorithm reflects the
forward modeling; 2) the resulting LAI estimates are compared
against an existing validated product for Canada; and 3) a
comparison is made with ground measurements in 1998 in
seven Landsat scenes in Canada.

A. Model Inversion Accuracy

In the complete inversion process, we used a simple two-
kernel model to fit results simulated by the complex Four-
Scale model, and some of the fitted coefficients are expressed in
Chebyshev polynomials. Each step is a simplification of phys-
ical processes into mathematical descriptions and can induce

errors. We therefore need to assess the size of these errors.
Deciduous and coniferous cover types are selected to represent
the whole inversion accuracy analysis because we treat every
cover type with the same physical and mathematical methods.
For deciduous and coniferous cover types, 12 486 and 17 128
groups of simulation results, including the angle combinations,
background reflectances, and canopy-level reflectances for dif-
ferent LAI levels that are obtained from the input and output
datasets of Four-Scale simulations, are used as inputs to the
LAI algorithm to calculate LAI values, and these LAI values
are statistically processed to compare with the input LAI values
to the Four-Scale model. Fig. 6 presents the inverted LAI mean
values and related standard deviation (SD) from the algorithm
as compared with the corresponding LAI inputs to the forward
Four-Scale model.

As demonstrated in Fig. 6, this new algorithm has extracted
most of the information from the complex model. Statistically,
this algorithm gives fairly acceptable LAI values compared
with the input LAI of the complex model with a maximum
SD of 15% and 11% for deciduous and coniferous cover types,
respectively. Standard errors would be about 120 times smaller.

B. Canada-Wide LAI Map Comparison

To ensure that our new algorithm are practical and are able
to produce LAI maps of desired accuracy, a VEGETATION
ten-day synthesis image dated June 11, 1998 was used here to
produce the Canada-wide LAI map shown in Fig. 7 using the
new algorithm. The same image was previously used to produce
a Canada-wide LAI map with a different algorithm requiring
inputs of BRDF-normalized surface reflectance. This existing
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Fig. 5. Global LAI map produced from a cloud-free ten-day synthesis image
of VEGETATION for the period of (a) January 21–31 and (b) July 21–31, 2003.

Fig. 6. Mean values of inverted LAI from the current algorithm versus the
input LAI to the Four-Scale model for (a) deciduous and (b) coniferous cover
types. The bar over each mean value represents the standard deviation of related
LAI sample.

Fig. 7. Canada-wide LAI map produced from a cloud-free ten-day synthesis
image of VEGETATION for the period of June 11–20, 1998.

Fig. 8. Canada-wide LAI map [9] versus a new LAI map (Fig. 8) produced
using the current algorithm. Both images were produced from the same cloud-
free ten-day synthesis image of VEGETATION for the period of June 11–20,
1998.

LAI map has undergone significant evaluation against ground
measurements [9]. A 1 : 1 scatter plot between the existing and
the current LAI maps of all cover types is shown in Fig. 8,
indicating a satisfactory agreement between these two maps
produced with different algorithms (the correlation coefficient
is 0.86). The apparent vertical line at LAI = 3 in Fig. 8 is
caused by an artificial limit of LAI = 3 for grassland imposed
in the previous algorithm of Chen et al. [9], but no such a limit
is used in the current algorithm. In the mean time, a histogram
of the difference between these two LAI maps is presented in
Fig. 9, where a positive value on the horizontal axis indicates a
larger value from the previous algorithm than from the current
algorithm. The mean difference between these two maps is less
than 0.5 with an SD of 0.4. At high LAI values (LAI > 7,
Fig. 8), there is a tendency that the values in the new LAI map
shown in Fig. 7 are smaller than the corresponding values in
the map of Chen et al. [9]. This discrepancy in LAI is caused
by a difference between the algorithms for the conifer type. In



DENG et al.: ALGORITHM FOR GLOBAL LAI RETRIEVAL USING SATELLITE IMAGERY 2227

Fig. 9. Histogram of the difference in LAI between the new Canada-wide LAI
map (Fig. 8) and the previous map [9].

Chen et al. [9], an empirical linear relationship between RSR
and LAI was used for conifer, whereas in the new algorithm,
this relationship is slightly curvilinear (Fig. 2), making LAI
increase slower at larger RSR values. Based on the physics of
radiation interaction with the canopy, the curvilinear shape is
expected at high LAI values.

C. Validation Against Ground LAI Measurements

The current LAI algorithm was validated indirectly against
ground-based LAI data using seven fine-resolution (30 m) LAI
images derived from Landsat TM scenes, covering different
biomes in Canada. Using high-resolution images was a nec-
essary step in validating coarse-resolution LAI images against
the ground data because ground plots were generally smaller
than 100 m in width or length. Ground measurements were
made in 1998 in these scenes by a large group using common
instruments and measurement protocols [9]. These LAI images
at 30-m resolution were retrieved using empirical relationships
established based on ground measurements and aggregated to
1-km resolution, as compared with the VEGETATION LAI
image (Fig. 7) calculated based on GLC2000 land cover data.
To minimize the effects of differences in land cover classifica-
tion between GLC2000 at 1-km resolution and that of Landsat
images at 30-m resolution, three VEGETATION LAI images
were retrieved with three different methods in using land cover
information, namely: 1) the original GLC2000 dataset was used
without any modifications; 2) the dominant land cover type
for each 1-km pixel was used based on Landsat land cover
information [9]; and 3) the fractions of various land cover
types in the Landsat images were used to weight the individual
LAI values corresponding to the different cover types. These
three LAI images were compared with Landsat LAI images,
and statistics of these comparisons are summarized in Table II.
The coefficients of determination for the VEGETATION LAI
image derived using the first method were quite variable among
the scenes (r2 = 0.13−0.75). Significant improvements were
achieved (r2 = 0.26−0.82) when the second method was used.
The best results were found using the third method (r2 =
0.50−0.85). These results suggest that the correct use of land
cover information played a vital role in LAI mapping, and when
accurate land cover information in the detailed Landsat scenes
were used, the algorithm applied to the VEGETATION image
produced LAI values in good agreement with Landsat scenes.

TABLE II
AVERAGE (AVG.) AND SD OF LAI FOR EACH LANDSAT TM SCENE AND

COEFFICIENTS OF DETERMINATION (r2), ROOT-MEAN-SQUARE ERROR

(RMSE), AND MEAN BIAS (MB) OF EACH OF THE THREE VEGETATION

(VGT) LAI RESULTS AT 1-km RESOLUTION AGAINST THESE LANDSAT

SCENES. THE THREE VGT RESULTS CORRESPOND TO THREE

DIFFERENT TREATMENTS OF LAND COVER INFORMATION,
NAMELY: 1) USING THE ORIGINAL GLCC LAND COVER

INFORMATION (LCGLCC); 2) USING THE DOMINANT

LAND COVER INFORMATION (LCdominant) BASED

ON LANDSAT IMAGES; AND 3) WEIGHTED LAI
(LCweighted) FOR LAND COVER

FRACTIONS IN THE LANDSAT IMAGES

This reaffirms the finding of Chen [38] that downscaling using
subpixel land cover information can considerably increase the
LAI mapping accuracy. This is especially true for Ontario and
Radisson scenes, where the land covers were more mixed than
the other scenes. A significant portion of the remaining errors
can be further explained by errors due to other factors (e.g.,
nonlinearity in the LAI algorithm) and differences in input VIs
between these high- and low-resolution images. These valida-
tion results suggest that the current LAI algorithm produced
reliable results for various cover types including deciduous and
conifer forests, crops, and grassland.

VI. CONCLUSION

The new LAI algorithm presented here features several de-
sirable characteristics for global application.

1) The two models (Four-Scale and two kernel) used in our
algorithm development are based on radiative transfer
physics rather than on empirical curve or surface fitting
techniques, so that the algorithm provides the fundamen-
tal trends of LAI variations with remote sensing signals
for various land cover types.

2) The procedure of angular normalization to the input re-
flectance images is no longer needed as the new algorithm
makes direct use of the measurements at all angles.
The angular variations of remote sensing signals are no
longer treated as sources of noise but rather sources of
information, provided the angular patterns for various
cover types are modeled accurately. In addition, without
the need for the angular normalization, which is difficult
for applications to the globe where the SZA varies greatly
within a given date, this new algorithm is suitable for both
regional and global applications.

3) With the emphasis on large-area applications, small LUTs
requiring only two iterations are used instead of a time-
consuming exact numerical method, so that this algorithm
is computationally highly efficient without sacrificing the
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accuracy of LAI retrieval. It is now feasible to produce
global LAI images at 1-km resolution on a personal
computer (for a whole globe image at one date, it requires
12 h with a Pentium IV personal computer at 3.0 GHz).

The simplified inversion algorithm is shown to be able to re-
produce the LAI values used as input to the forward model. The
resulting spatial estimate for Canada compares favorably with
a previously validated Canada-wide LAI map and ground mea-
surements in seven Landsat scenes in Canada. Further work is
needed to validate the algorithm for other regions of the globe.
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